Alongi, D. M. 2008. Mangrove forests: Resilience, protection from tsunamis, and response to
global climate change. Estuarine, Coastal and Shelf Science 76: 1-13.
https://www.sciencedirect.com/science/article/pii/S0272771407003915
Alongi, D. M. 2012. Carbon sequestration in mangrove forests. Carbon Management 3:
313-322. https://www.tandfonline.com/doi/abs/10.4155/cmt.12.20
Alongi, D. M. 2014. Carbon Cycling and Storage in Mangrove Forests. Annual Review of
Marine Science 6: 195-219.
https://www.annualreviews.org/doi/10.1146/annurev-marine-010213-135020
Beckers, F., Rinklebe, J. 2017. Cycling of mercury in the environment: Sources, fate, and human
health implications: A review. Critical Reviews in Environmental Science and
Technology 47: 693-794.
https://www.tandfonline.com/doi/full/10.1080/10643389.2017.1326277
Beckers, F., Awad, Y. M., Beiyuan, J., Abrigata, J., Mothes, S., Tsand, D. C., Ok, Y. S.,
Rinklebe, J. 2019. Impact of biochar on mobilization, methylation, and mehtyaltion of
mercury under dynamic redox conditions in a contaminated floodplain soil. Environment
International 127: 276-290.
https://www.sciencedirect.com/science/article/pii/S0160412018331209
Bergamaschi, B. A., Krabbenhoft, D. P., Aiken, G. R., Patino, E., Rumbold, D. G., Orem, W.
H. 2012. Tidally Driven Export of Dissolved Organic Carbon, Total Mercury, and
Methylmercury from a Mangrove-Dominated Estuary. Environmental Science and
Technology 46: 1371-1378. https://pubs.acs.org/doi/10.1021/es2029137
Bouchet, S., Goni-Urriza, M., Monperrus, M., Guyoneaud, R., Fernandez, P., Heredia, C.,
Tessier, E., Gassie, C., Point, D., Guedron, S., Acha, D., Amouroux, D. 2018. Linking
Microbial Activities and Low-Molecular-Weight Thiols to hg Methylation in Biofilms
and Periphyton form High-Altitude Tropical Lakes in the Bolivian Altiplano.
Environmental Science and Technology 52: 9758-9767.
https://pubs.acs.org/doi/10.1021/acs.est.8b01885
Correia, R. R., Guimaraes, J., R. 2017. Mercury methylation and sulfate reduction rates in
mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganisms
consortia. Chemosphere 167: 438-443.
https://www.sciencedirect.com/science/article/pii/S0045653516313650
Dittmar, T., Hertkorn, N., Kattner, G., Lara, R. J. 2006. Mangroves, a major source of dissolved
organic carbon to the oceans. Advancing Earth and Space Science 20: 1-7.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005gb002570
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M.
2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience
4: 293-297. https://www.nature.com/articles/ngeo1123
Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci,
S., Diele, K., Ewel, K. C., Field, C. D. 2007. A world without mangroves? Science
317: 41-42.
Frohne, T., Rinklebe, J., Langer, U., Laing, G. D., Mothes, S., Wennrich, R. 2012.
Biogeochemical factors affecting mercury methylation rate in two contaminated
floodplain soils. Biogeosciences 9: 493-507.
https://www.biogeosciences.net/9/493/2012/
Gilmour, C. C., Elizabeth, A., Mitchell, H., Mitchell, R. 1992. Sulfate stimulation of mercury
methylation in freshwater sediments. Environmental Science and Technology 26:
2281-2287. https://pubs.acs.org/doi/abs/10.1021/es00035a029
Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C.,
Johs, A., Hurt, R. A., Bailey, K. L., Elias, D. A. Mercury Methylation by Novel
Microorganisms from New Environments. Environmental Science & Technology. 47:
11810-11820. https://pubs.acs.org/doi/abs/10.1021/es403075t
Giri, C., Ochieng, E., Tieszan, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., Duke, N. 2015.
Status and distribution of mangrove forests of the world using earth observation satellite
data. Global Ecology and Biogeography 20: 154-159.
Khwaja, A. R., Bloom, P. R., Brezonik, P. L. 2006. Binding Constants of Divalent Mercury
(Hg2+) in Soil Humic Acids and Soil Organic Matter. Environmental Science and
Technology 40: 844-849. https://pubs.acs.org/doi/10.1021/es051085c#
Leclerc, M., Planas, D., Amyot, M. 2015. Relationship between Extracellular
Low-Molecular-Weight Thiols and Mercury Species in Natural Lake Periphytic Biofilms.
Environmental Science and Technology 49: 7709-7716.
https://pubs.acs.org/doi/10.1021/es505952x
Lei, P., Zhong, H., Duan, D., Pan, K. 2019. A review on mercury biogeochemistry in mangrove
sediments: Hotspots of methylmercury production? Science of the Total Environment
680: 140-150.
https://www-sciencedirect-com.libproxy.uoregon.edu/science/article/pii/S...
0091
Liu, Y., Johs, A., Bi, L., Lu, X., Hu, H., Sun, D., He, J., Gu, B. 2018. Unraveling Microbial
Communities Associated with Methylmercury Production in Paddy Soils. Environmental
Science & Technology. 52: 13110-13118.
https://pubs.acs.org/doi/10.1021/acs.est.8b03052
Nagelkerken, I., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, L. G.,
Meynecke, J. O., Pawlik, J., Penrose, H. M., Sasekumar, A., Somerfield, P. J. 2008. The
habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany
89: 155-185. https://www.sciencedirect.com/science/article/pii/S0304377007001830
Parks, J. M., Johs, A., Podar, M., Bridou, R., Richard, A. H., Smith, S. D., Stephan, J. T., et al.
The Genetic Basis for Bacterial Mercury Methylation. Science. 339: 1332-1335.
https://science.sciencemag.org/content/339/6125/1332
Ray, R., Baum, A., Rixen, T., Gleixner, G., Jana, T. K. 2018. Exportation of dissolved (inorganic
and organic) and particulate carbon form mangroves and its implications to the carbon
budget in the Indian Sundarbans. Science of The Total Environment 621: 535-547.
https://www.sciencedirect.com/science/article/pii/S0048969717332837
Regnell, O., Watras, C. J. 2019. Microbial Mercury Methylation in Aquatic Environments: A
Critical Review of Published Field and Laboratory Studies. Environmental Science &
Technology. 53: 4-19. https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02709
Tai, C., Li, Y., Yin, Y., Scinto, L. J., Jiang, G., Cai, Y. 2014. Methylmercury Photodegradation in
Surface Water of the Florida Everglades: Importance of Dissolved Organic
Matter-Methylmercury Complexation. Environmental Science and Technology 48:
7333-7340. https://pubs.acs.org/doi/10.1021/es500316d
Wu, H., Ding, Z., Liu, Y., Liu, J., Yan, H., Pan, J. Li, L., Lin, H., Lin, G., Lu, H. 2011.
Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River
Estuary, China. Journal of Environmental Sciences 23: 14-21.
https://www.sciencedirect.com/science/article/pii/S1001074210603683